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Abs trac t 

It is anticipated that in order to make effective use of many future high perfor- 
mance architectures, programs will have to exhibit at least a medium grained paral- 
lelism. Methods for aggregating work represented by a directed acyclic graph are of 
particular interest for use in conjunction with techniques now under development for 
the automated exploitation of parallelism. 

In this paper we present a framework for partitioning very sparse triangular systems 
of linear equations that is designed to produce favorable performance results in a wide 
variety of parallel architectures. Efficient methods for solving these systems are of 
interest because (1) they provide a useful model problem for use in exploring heuristics 
for the aggregation, mapping and scheduling of relatively fine grained computations 
whose data dependencies are specified by directed acyclic graphs and (2) because such 
efficient methods can find direct application in the development of parallel algorithms 
for scientific computation. 

Simple expressions are derived that describe how to schedule computational work 
with varying degrees of granularity. We use the Encore Multimax as a hardware 
simulator to investigate the performance effects of using the partitioning techniques 
presented here in shared memory architectures with varying relative synchronization 
costs. 

* Work supported in part by NASA contract NAS 1-18107, the Office of Naval Research under Contract 
No. NOOO14-86-K-0310 and NSF grant DCR 8106181. 
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1 Introduction 
A set of techniques is proposed for producing parameterized mappings of the solution of 
a very sparse triangular system of linear equations onto a range of parallel architectures. 
The solution of systems in which matrices typically have just a few non-zero elements per 
row is a particularly interesting problem to investigate for a variety of reasons. 

In solutions of such systems, the number of floating point operations that can be per- 
formed at any one time is typically rather limited, hence in this problem synchronization 
and communication overheads play a particularly crucial role in determining the perfor- 
mance that can be achieved. The problem thus provides a simple yet challenging context 
in which to develop practical methods for automated problem mapping and work aggre- 
gating techniques. Efficient methods for solving very sparse triangular systems, easily 
adapted to a variety of architectures, have direct application in the efficient parallelization 
of Conjugate Gradient type algorithms preconditioned with incomplete LU factorizations. 
In our discussions and experimental investigations, we will focus in particular on sparse 
triangular systems that are generated from incomplete factorizations of matrices arising 
from discretizations of two dimensional partial differential equations. 

Methods for aggregating work represented by a directed acyclic graph are of partic- 
ular interest for use in conjunction with techniques under development for automating 
the exploitation of parallelism. In the ongoing Crystal/ACRE [ 131 parallel programming 
environment development effort, we are developing simple sets of techniques that can be 
used for the automated mapping of a variety of problems onto both very tightly coupled 
systems as well as onto systems that are quite loosely coupled. The study of methods 
for aggregating the work involved in solving very sparse triangular systems provides a 
tractable model system for the exploration of methods for aggregating work represented 
by various types of directed acyclic graphs arising during the compilation and execution 
of Crystall ACRE programs. 

In the Crystal/ACRE system, a very high level algorithm specification is supplied by 
the user. In this specification, the detailed interactions among processes in space and 
time are suppremed. The Crystal compiler and runtime system are being designed to 
allow the generation of ihstructions to direct an assemblage of communicating processes in 
the efficient execution of the specified algorithm. The compiler generates as many logical 
processes as possible and then the compiler or the runtime system combines clusters of 
logical processes to produce a problem decomposition that possesses a degree of granularity 
that is appropriate for the target machine. 

In scientific applications, one frequently wishes to obtain multiple solutions with the 
same triangular system. Consequently it can be appropriate to spend a modest amount 
of time prescheduling the computations. Because of the small number of floating point 
computations required by each row, it is essential that very little time be spent during 
the algorithm’s execution in scheduling row solutions. The approach taken here is to 
develop a set of methods requiring a set of standard preprocessing techniques that will 
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allow this problem to be mapped or scheduled onto architectures with widely varying 
characteristics. The techniques will involve choosing parameters that allow one to make a 
variety of tradeoffs in the schedule or mapping specification. 

We will assign to  a single processor all computations pertaining to a row of the matrix. 
All computations pertaining to a given row are performed during the first phase after the 
data required is known to be available. Note that this implies a potentially fine degree 
of granularity as we have a stated interest in matrices having few non zero elements in a 
row. The concurrency achievable through the use of this algorithm is determined by the 
dependencies between the rows of the triangular matrix. The computation is partitioned 
into phases and simple expressions are derived that describe the scheduling of computa- 
tional work. This paper will for the most part discuss these methods in the context of 
architectures that support shared memory and will consider the tradeoffs between syn- 
chronization delays and load balance. When appropriate, we will also discuss the use and 
performance of these mappings in environments that support fast preferential access to a 
local memory. The mapping techniques discussed here are currently being implemented 
on a message passing machine, the experimental results will be presented elsewhere. 

In the execution of a fine grained problem on a shared memory machine such as the 
Encore Multimax, primary impediments to the achievement of ideal multiprocessor perfor- 
mance are (1) load imbalance, (2) synchronization delays and (3) programming techniques 
that introduce computations not found in a corresponding sequential program intended 
to coordinate the parallel execution of a problem. Our techniques provide a reduction in 
(1) and (2). Since a prescheduled approach is used, it will be shown that it is possible 
to keep (3) from becoming a serious problem. The strategies developed here for dealing 
with these overheads are to: (A) reduce the number of synchronizations required during 
the solution of the problem, (B) make synchronizations less expensive and (C) improve 
the balance of load in between synchronizations. Due to the rather slow computation and 
the rapid synchronization, the Multimax presents a rather benign parallel environment. 
We will consequently also make use of this machine to provide hardware simulations of 
algorithm performance in architectures with relatively larger synchronization times. 

In message passing environments (such as the Intel iPSC), (1) and (3) remain crucial 
impediments to the achievement of ideal multiprocessor performance. In current message 
passing machines communication startups are quite expensive ([12]); techniques that min- 
imize the number of such startups are consequently of crucial importance. The techniques 
discussed here that reduce the number of synchronizations clearly also reduce the number 
of startups required. In message passing machines the amount of information communi- 
cated also can play an important role in the determination of performance. As we shall 
see from the analysis of a model problem below, the specification of the parameters in 
the parameterized mapping also plays an important role in determining the amount of 
information that must be communicated. 

The problem partitions and work schedules that result from the process described 
above may be viewed as a generalization of the work described by Saad [14]. In that 
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report, a wavefront method was proposed for scheduling work involved in forward and 
backsolves of matrices arising from incomplete factorizations of matrices generated by 5 
point discretizations of two dimensional elliptic partial differential equations. The work 
described by Saad as well as the results presented here assume a row oriented matrix storage 
scheme. Experimental work has been reported on the NYU ultracomputer prototype 
involving the use of a wavefront method, where the work involved in solving for rows of 
sparse triangular linear systems was allocated in a self-scheduled manner [6]. 

A related body of literature also exists on the solution of triangular systems that 
are less sparse than the ones described here, these systems are generally obtained from 
matrix factorizations used in direct methods for solving sparse or non-sparse systems of 
linear equations. In these problems, the data dependencies between rows of the triangular 
matrix preclude the efficient use of methods that schedule all work pertaining to a given 
row at a time when all required data is available. 

George [4] presents algorithms for a column oriented sparse cholesky factorization, 
along with algorithms for column oriented forward and backsolves. These algorithms uti- 
lize the notion of a pool of tasks whose parallel execution is controlled by a self-scheduling 
discipline. Heath [7] presents algorithms for parallel solution of triangular systems in dis- 
tributed memory multiprocessors; these algorithms utilize a type of adjustable parameter 
for controlling algorithm granularity quite different from the ones discussed here. In the 
algorithms described in [7], the work required to calculate the inner products involved in 
solving for each row is shared among the processors. In very sparse triangular systems 
considered in this paper, there are very few computations involved in solving for a given 
variable. In these systems, parallelism can be obtained because the data dependencies 
between rows can allow one to solve for many variables simultaneously. 

In section 2 we discuss methods for generating a parameterized problem decomposition 
that allows for considerable flexibility in determining the granularity of parallelism and 
facilitates inexpensive forms of synchronization. This defines a kind of coordinate system 
that can be used to advantage in specifying how the problem is to be solved. We derive 
in section 3, expressions using the parameters arising from the decomposition defined in 
section 2 that allow the specification of the decomposition of the triangular system in a 
way that guarantees that the data dependencies in the problem will be respected. The 
expressions describing the parametrized schedules depend on, among other things, the type 
of synchronization utilized. 

In section 4, through the analysis of a model problem, an analysis is made of the 
the tradeoffs between load imbalance and synchronization costs, as well as the tradeoffs 
between load imbalance and communication costs. An inexpensive method for explicitly 
balancing the load during each a phase of computation is described in section 5.  In section 
6 the results are reported of experimental investigations on the Encore Multimax multipro- 
cessor that (1) explore the effect of parametric variations of granularity on performance, 
(2) evaluate the value of explicitly balancing load during each computational phase and (3) 
compare the performance obtained through the use of different synchronization techniques. 
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2 Problem Partitioning 

2.1 Overview 
The methods of problem partitioning described here have a strong geometrical motivation 
and will consequently first be introduced in a geometrical context. In the simplest form of 
incomplete LU preconditioning, the factors L and U have the same sparsity structure as the 
lower and upper portions of A respectively. A prior knowledge of the sparsity structure will 
be used to advantage in the generation of the following parameterized problem mapping. 
Note that this prior knowledge is not needed when the automated version of the problem 
mapping is used. This automated version of problem mapping will be described in the 
following section. 

We will assume that we have a rectangular array of grid points, all points are connected 
with the same stencil. The stencil is assumed to link a given point with it’s left, right, 
upper and lower neighbors in the grid. The matrix is formed by using the so called natural 
ordering in which grid points are numbered in a row-wise fashion beginning with the first 
column of the first row of the domain. 

The data dependency pattern between unknowns in the lower triangular solution may 
be best understood by referring back to the stencil and the grid utilized in the formulation 
of the problem [14]. Let xi,j be the location of a mesh point in the two dimensional domain, 
where 1 5 i 5 n and 1 5 j 5 n . In the definition of the problem, a function value at  
a point xi,j is linearly dependent on function values at a given set of surrounding points. 
When a system involving a lower triangular matrix with the same sparsity structure as A 
is solved, the only interactions that need be considered are with variables in the grid that 
are in rows before i ,  as well as variables in row i that are before column j .  

The grid points in a given row must be solved for sequentially, due to the coupling of 
each point to it’s immediate neighbors. We assume that the stencil is rather small, so that 
relatively few calculations are involved in obtaining the value for a single grid point of the 
domain. In these mappings, the smallest unit of work that may be assigned to a particular 
processor consists of the computations pertaining to a particular row of grid points. The 
computations in a given row i depend only on results from row j < i. Depending on the 
relative size and properties of the problem and of the machine, better performance may 
be obtained by using a coarser grained assignment of work in which contiguous blocks of 
several rows are assigned to each of k processors. When there are more blocks of rows 
than there are processors, a wrapped assignment is used in which blocks are assigned to 
processors modulo k. 

Given a fixed assignment of grid points to processors, one may be free to schedule 
the work associated with calculating values at mesh points in a variety of different ways. 
This processor scheduling has a marked effect on the frequency with which processors must 
interact to exchange information. When a five point stencil is utilized, a convenient method 
of scheduling is to partition each block into windows of w columns each. Because of the use 
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Figure 1: Two processors, five point stencil, block size = 2, window = 3. Numbers designate 
computational phases. 

of the five point stencil, values for all points in a given window of a block may be computed 
before any work on the next window is begun. If one numbers the windows in each block 
from left to right, block i may commence work on window j when block i - 1 has finished 
work on window j. This leads to a pattern of computation (141 in which a wavefront of 
computation is seen to propagate from the lower left portion of the domain (Figure 1). 
The block size and the size chosen for the window both determine the coarseness of the 
computation’s granularity. In [14] is found a quantitative analysis of this tradeoff in the 
case where the block size is equal to the window size and the grid is square. This analysis 
is extended both analytically and experimentally in the following in order to explore the 
effects of independently varying block and window size in a rectangulaz grid. 

For a grid whose points are connected by an arbitrary stencil, the definition of work 
schedules that maintain data dependency relations yet allow for varying degrees of gran- 
ularity is somewhat more subtle. Work is begun in the first row of the first block, and in 
this row the values for a window of w grid points are calculated. Following this, values are 
found for all mesh points in the block for which data dependencies allow calculation. The 
computation proceeds after this in stages, with the computations that may proceed in a 
block at a given time determined by dataflow considerations. If one wishes to aggregate 
points in blocks into larger units, with each unit calculated sequentially, the partitioning 
will take on a zig-zag form. Figure 2 depicts the pattern of wavefronts that results from 
partitioning a domain with a nine point stencil into blocks of size two, and scheduling 
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Figure 2: Two processors, nine point stencil, block size = 2, window = 3. Numbers 
designate computational phases. 

computation using a window size of two. 

2.2 Automated Problem Partitioning 
In order to automate problem partitioning and work scheduling, it is essential to be able to 
dispense with as much application dependent information as possible. We have developed 
and tested a method for generating a work partition in problems possessing data depen- 
dencies given by a directed acyclic graph (DAG). This method bears a strong relationship 
to methods proposed for systolic array generation 111, [lo]. The order in which variables, 
described by rows in L, can be solved may be depicted by a directed acyclic graph D. The 
evaluation of rows in L are represented by the vertices of D, and the data dependencies 
between the rows by D’s edges. The dependence of matrix row a on matrix row b is rep- 
resented by an edge going from vertex b to vertex a. A topological sort may be performed 
which partitions the DAG into wavefronts. A stage of this sort is performed by alternately 
removing all vertices that are not pointed to by edges, and then removing all edges that 
emanated from the removed vertices. All vertices removed during a given stage constitute 
a wavefront; the wavefronts are numbered by consecutive integers. An adaptation of a 
common topological sort algorithm [9] allows the wavefronts of a DAG to be calculated 
efficiently. 

The wavefronts calculated through this process can be utilized directly in implement- 
ing a very general method for scheduling the row substitutions required for the solution of 
the equations. The row substitutions in any wavefront may be executed simultaneously. 
A very straightforward method for solving the problem is consequently to partition the 
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Figure 3: Data Dependencies 

problem’s solution into phases, each of which is dedicated to a given wavefront. On shared 
memory machines, the straightforward application of this technique requires a global syn- 
chronization between phases. Because in many cases there is only a relatively modest 
amount of computation required for a given phase, the relative cost of the global synchro- 
nization can be substantial, as will be shown in the experimental results below. On many 
message passing machines, (e.g. the Intel iPSC [12]), the communication latency makes 
this kind of medium grained parallelism particularly prohibitive. Similarly, in message 
passing machines, it is of considerable importance to map problems in a way that reduces 
interprocessor communication requirements. 

For many problems possessing relatively regular patterns of data dependency, one can 
obtain a variety of benefits on both shared memory and message passing machines by 
carrying the run time analysis a step further by partitioning the DAG in a particular way. 
The points of a DAG are partitioned into disjoint sets called strings. A string partition of 
a problem is generated through the following sequence of depth first traversals in DAG D. 

We define a start vertex of D as a vertex not pointed to by any edge. The vertices 
making up a string S are chosen in the following way. A start vertex V of D is chosen, 
all edges emanating from V are removed; if a new start vertex V’ is created through the 
removal of edges, V’ is included in the string. The process is continued to recursively 
remove as many vertices as possible from D, and assign them to S. Note that when, during 
the creation of string S, the removal of a vertex exposes multiple start vertices, only one of 
these start vertices are included in S. As vertices V’ are assigned to S, we mark the vertices 
W remaining in D that had edges arising from V’. New strings are begun using available 
start vertices. In choosing vertices to incorporate in all strings after the first, preference 
is given to vertices previously marked by other strings. 

Strings have the following properties: (1) The points in each string are connected, (2) 
There is no more than one point belonging to a given wavefront in a string, (3) The graph 
describing the inter-string dependencies is a directed acyclic graph. The DAG describing 
the inter-string dependencies will be called the string DAG. 
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Figure 3 depicts a DAG which could be obtained from a zero fill incomplete factorization 
of a matrix arising from the discretization of an elliptic partial differential equation using 
a nine point star template. Figure 4 depicts the wavefronts in the computation, and figure 
5 depicts a string decomposition and illustrates the string DAG corresponding to this 
problem. 

It should be noted that it may be possible to partition a DAG into strings in several 
different ways. For example, the triangular system arising from the zero fill factorization 
of the matrix generated by a rectangular grid with a 9 point template can be partitioned 
in two ways. In one partitioning, matrix rows originating from horizontal strips of domain 
form strings, in the other matrix rows originating from diagonal strips of domain form 
strings. Performance implications of these different methods of decomposition will be 
touched on in the presentation of experimental timings below. 

When a DAG originates from the incomplete decomposition of a two dimensional do- 
main, it is possible to make sure that the strings are chosen in a much more controlled 
manner. The decomposition can be determined by the way in which the mesh points are 
ordered in the formation of the matrix. It is simple to arrange for the algorithm to give 
preference to lower numbered rows when forming new strings from start vertices D, and to 
attempt to incorporate rows into a growing string in order of increasing row number. For 
example, figure 6 depicts a simple way of numbering the grid points from figures 3 and 4 
to ensure the production of the string decomposition depicted in 5. 

In a rough sense, the strings of a DAG D are sets of points orthogonal to the wavefronts 
of D. This type of decomposition allows for considerable flexibility in determining the 
granularity of parallelism, as discussed below. The decomposition of the DAG D into 
strings will be shown below to facilitate particularly inexpensive forms of synchronization 
in shared memory architectures. 

The data dependency relationships in the problems discussed in this paper are quite 
regular and are easily handled by the mechanism described above and in fact could be 
handled by methods described in [l] if the data dependencies were given in a symbolic 
fashion. 

2.3 Mapping Strings onto Processors 
The string DAG may be distributed among processors in a variety of ways. On message 
passing machines, mapping large contiguous sections of the string DAG onto each proces- 
sor will tend to minimize communication costs, but will also tend to lead to poor load 
distributions. Scattering or wrapping strings that are contiguous in the DAG may lead to 
a much better load distribution at  the price of increased communication costs. 

The work associated with each cluster of strings may be scheduled with varying degrees 
of granularity. The string DAG defines a partial ordering among the strings. The starting 
strings may be defined as the strings that precede all others in this partial ordering. 
Computations of rows in these strings are not dependent on information from any other 
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strings in the string DAG. 
The partial ordering of the data dependencies between the strings allows for the 

straightforward implementation of dataflow synchronization methods. The granularity of 
parallelism may be determined by fixing the amount of work starting strings can perform 
before communicating their data to other strings in the string DAG. Simple relationships 
involving the wavefronts of rows allows the calculation of which rows may be solved for by 
a processor assigned to a cluster of strings. 

3 Construction of Work Schedules 

3.1 Overview 
The parallelism involved in solving a sparse triangular system of equations is inherently 
rather fine grained; the work required to compute the value of a variable corresponding 
to a given row generally amounts to only a few floating point operations. In scientific 
applications, one frequently wishes to obtain multiple solutions with either the same tri- 
angular system or triangular systems with the same non zero structure. In these cases, it 
seems is appropriate to spend a modest amount of time to calculate a work schedule. It is 
essential, however, that very little time be required to schedule row executions during the 
execution of the algorithm. We consequently have chosen to use a prescheduled approach 
in which the rows to be computed by a string at a given phase in a computation are chosen 
implicitly by determining the wavefronts that should be computed during that phase. 

We will now consider methods for scheduling the execution of work given a string DAG. 
We will assume that the strings making up the string DAG have been linearly ordered 
and that contiguous blocks of b strings are demarcated and are assigned to consecutively 
indexed processors in a wrapped manner. In the following, we will say that we have 
computed wavefront q in some block of strings when we compute values for all matrix rows 
belonging to wavefront q. 

For barrier and dataflow synchronization methods, we will calculate the largest wave- 
front that the strings in a block must compute during a particular phase. Obviously 
computations cannot be undertaken until the required data is available. The calculation 
of the wavefronts that are to be computed during each phase takes into account the data 
that is guaranteed to be available when a processor reaches a given phase. 

The phase during which one can assure data availability for a given computation de- 
pends on (1) the synchronization mechanism used, (2) the data dependency relationships 
between the strings of the string DAG and (3) the data dependencies between the blocks 
into which the string DAG is partitioned. 
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3.2 Barrier Synchronization 
We will now discuss scheduling when barrier synchronization methods are employed; these 
methods assure that all processors have finished phase p - 1 before any processor is allowed 
to begin phase p. 

The proposition below presents expressions that give the maximum wavefront number 
that is to be computed by a given block i during phase p under the assumption that the 
first block computes exactly w wavefronts per phase; i.e. during phase p the first block 
computes wavefronts w ( p  - 1) + 1 to wp. 

This proposition may be regarded as a method of parametrically describing the wave- 
fronts of a coarse grained DAG, each vertex of which represents the solution of a number 
of rows (note: this coarse grained DAG is not the string DAG). A wavefront of this coarse 
grained DAG will be called a block wavefront. It should be noted that one may assign 
any work scheduled during a phase to any processor one desires. In problems described 
by irregular DAGS it will be shown below that explicitly balancing the processor load in a 
block wavefront during each phase can be quite advantageous. 

Proposition 1 Assume that strings making up the string D A G  have been linearly ordered, 
that contiguous b loch  of strings are demarcated, and that these blocks are assigned to con- 
secutively indexed processors in a wrapped manner. Let W; represent the largest wavefront 
that can be scheduled during phase p b y  block i under the following conditions: (1) the 
f irst  block advances w wavefronts per phase, ;.e. Wi = wp,  and (2) all required data i s  
computed before the system reaches phase p .  
W: is given by the expression Wj = max(p, w ( p  - i + 1) + i - 1). 

In scheduling work for block i during phase p ,  we must take into account the numbers 
of the wavefronts corresponding to the latest available results from blocks 1 5 j < i, since 
block i may require results from any of these blocks. Since no work can be performed 
before the first phase, we set Wj = 0 for p = 0. The number of the smallest wavefront 
corresponding to any result that might be needed by block i at the beginning of phase p 
may be expressed as 

Consequently, 
W; = min w:-~ + 1 

1< j<i 

for p 2 1. 

then Wj = V?;. This proof proceeds by induction on block number i. 
We now use the above to prove that for all p 2 1, if Wj = max(p, w ( p  - i + 1) + i - 1) 

For i = 1, by assumption Wp’ = wp. Since V?p’ = m a x ( p , w p ) ,  Wp’ = Wp’. 
We will now use the induction hypothesis for j 5 i to show Wj+l = Wj+l for p 2 1 and 

i L 2. We are assuming that for j 5 i and p 2 1, 

~ p j  = max(p, w ( p  - j + I) + j - 1). 
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For p 2 2, j 5 i we thus have 

= max(p - I ,  w ( p  - j) + j + 1) = m a x ( p  - 1, w ( p  - I )  - (w - l ) ( j  - I ) )  

Now 

so because 
lSj<a+l mi? wie1 = m a x ( p - l , w ( p - i ) - ( w - l ) ( i - l ) ) ,  

it follows that 
Wi+l - 
P - m a x ( p , w ( p  - (i  + 1) + 1) + (i + 1) - 1). 

Thus P = Wi+' P and the induction is complete for p 2 2. 
For p = 1, since W l  = 0, W;+' = minl<j<i+l W l  + 1 = 1. As it is easily verified that 

Thus we have shown that for p 2 1, W;+l = I$$+' and the proposition is proved. 
0 

w;+1 = 1, w;+1 = *;+1 

3.3 
When it is known that data dependencies occur only between adjacent strings, a more 
aggressive scheduling policy can be used. 

Barrier Synchronization - Nearest Neighbor String DAG 

Proposition 2 Assume that strings making up the string D A G  have been linearly ordered 
so that data dependencies occur only between adjacent strings, that contiguous blocks of 
strings are demarcated, and that these blocks are assigned to consecutively indezed proces- 
sors in a wrapped manner. Let Wj represent the largest wavefront that can be scheduled 
during phase p by block i under the following conditions: (1) the first block advances w 
wavefronts per phase, i.e. W i  = w p  + b - 1, and (2) all required data is computed before 
the system reaches phase p. 

W; is given by the ezpression 

w i = {  ~ ( p -  i + 1) + ib - 1 i f  p 2 i 
P bP i f0  5 p < i. 

Assume that block B has assigned to it strings u + r ,  1 5 r 5 b and that string v has 
advanced it's calculations up to phase p.  Due to the nearest neighbor data dependency 
relations, string u + r  may be advanced to wavefront p+r. Note that were we not to assume 
nearest neighbor inter-string data dependencies, it is possible that string v + r could have 
a direct data dependence on string u.  In this general case, string u + r could not proceed 
beyond phase p + 1. We are thus able to conclude that when we use continuous blocks of 
b strings each, 

w; Wi--l+ b 
P- 1 
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Using the above relationship, we will show by induction on block number i that for all 
p 2 1, if li.:=( t u ( p - i + l ) + i b - l  i f p z i  

bP i f O < p < i  

then Wj = I@;. 
For i = 1, I@; = wp + b - 1 for p 2 1 so Wp' = Wi. 
Assume that W: = I@' for p 2 1. We will show that W;+l = P?+l Q for q 2 1. We first 

consider the situation that occurs when q 2 i + 1.  In this case we have 

w'+1 - 
p+l - w; b = W ( ( P  + 1 )  - ( i  + 1) + 1) + ( i  + l ) b  - 1. 

Since p + 1 2 i + 1 ,  the above expression is equal to fii;:, and consequently W;+l = ~ ; + l  

for q 2 i + 1. 
For 0 5 p < i ,  w'+l- p+l - wj + b = b(P + 1 ) .  

Since p + 1 < i + 1, ~;:t = b ( p  + 1) and hence W;+' = ~ @ + l  Q for 1 5 q < i + 1. 
0 

3.4 Dataflow Synchronization 
When dataflow synchronization is used, at any given time processors may be performing 
computations specified by different phases. To ensure that needed data is available when 
a processor performs its computations during a phase, we must construct a schedule that 
makes adequate allowance for the weak interprocessor synchronization. The calculation of 
the wavefronts that are to be computed during each phase takes into account the data that 
is guaranteed to be available when a processor reaches a given phase. The schedule to be 
presented below also takes into account the data dependencies between blocks of strings 
in the string DAG. 

To illustrqte the role of inter-block data dependencies in determining schedules for per- 
forming work when dataflow aynchronisation is used, consider an important special case 
that arisest when inter-block data dependencies are restricted to nearest neighbors, i.e. 
block i + 1 requires data only from block i. In this case the constraints for scheduling 
wavefront execution during a given phase p are identical for dataflow and barrier syn- 
chronization mechanisms. In either of these synchronization mechanisms, a processor P 
beginning phase p + 1 has to know that its predecessor has finished phase p. Block i as- 
signed to P requires data only from block i - 1 so that no provision need be made for the 
possibility that blocks upon which i depends have not yet computed values for wavefronts 
corresponding to phase p. 

When dataflow synchronization is employed, proposition 3 below presents expressions 
that give the maximum wavefront number that is to be computed by a given block i during 

13 



phase p ,  under the assumption that (1) the first block computes exactly w wavefronts per 
phase, and (2) block i can require data only from blocks j,  max(i-d, 1) 5 j < i. Note that 
when d = 1 we have the previously discussed case of nearest neighbor data dependencies. 
The string DAGS that arise from many problems obtained from incomplete factorizations 
of matrices arising from partial differential equations are frequently characterized by small 
values of d. 

The expression is obtained by mapping a chain of logical processes in a wrapped manner 
onto the P processors of the machine. For the sake of tractability, the expressions are 
derived under the assumption that the logical processes assigned to a given processor are 
assumed to be independent of one another. In the actual system, all processes assigned 
to the same processor must complete a given phase before beginning the next. Creating 
schedules using the assumption that processes assigned to a processor are independent 
assures us that computations will not be undertaken until the required data are available, 
since such a schedule allows for the possibility that all processes on a given processor could 
be computing the same phase at a given time. When d < P, the expressions derived yield 
the largest wavefront that could be scheduled by a given block at a particular time, when 
d >_ P this is no longer necessarily the case. 

Proposition 3 Assume that strings making up the string DAG have been linearly ordered, 
that contiguous blocks of strings are demarcated, and that these blocks are assigned to 
consecutively indexed processors in a wrapped manner. Assume that each block constitutes 
a process that executes its computations in phases subject to the constraint that at  any  
t ime,  if block i has finished phase p ,  block i + 1 can complete all phases with numbers less 
than  or equal to p + 1. Furthermore assume that each block i requires data only f rom blocks 
max(i - d ,  1) through i - 1. 

Let Wi represent the largest wavefront that can be scheduled during phase p by block i 
under the following conditions: (1) the first block advances w wavefronts per phase, i.e. 
W,' = w p ,  and (2) all required data is  computed before the system reaches phase p.  

For i 2 2, Wj is  given by the expression 

W; = m a x ( [ p / d ] ,  w ( p  - i + 1) + [(i - l ) / d l )  (1)  

In scheduling work for block i+l during phase p ,  we must take into account the numbers 
of the wavefronts corresponding to the latest available results from blocks max(1, i -d+l)  I 
j < i + 1, since block i + 1 may require results from any of these blocks. Since no work 
can be performed before the first phase, we set Wj = 0 for p I 0. The number of the 
smallest wavefront corresponding to any result that might be needed by block i + 1 at the 
beginning of phase p may be expressed for i 2 1 as 

Consequently, 
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for p 2 1, i 2 1. 
We now use the above to prove by induction on i 2 2 that for all p 2 1, if 

c ~: =m=([p/dl ,w(p-i+l)  + [ ( i - l ) /d l ) ,  (3) 

then W; = $;. 
We first establish the base of the induction. By (2), W,' = W;-l + 1; as W,' = wp by 

assumption it follows that W,' = w(p-l)+l.  From (3), I@,' = m a z ( [ p / d ] , w ( p - l ) + ~ l / d ] ) .  
For p 2 1, the above expression is equal to w(p  - 1) + 1. Hence W,' = $:. 

Assume that Wj = $j for 2 5 j 5 i ,  p 2 1, we will show that W;+l = We first 
consider the case when 

p - i + max(1,i - d + 1) - 1 5 0. (4) 
From (3), for all 1 5 j 5 i and p 2 1, W j  2 1. Since Wj = 0 for p 5 0, from (2) and 

We will show that when (4) is satisfied, it is also the case that +;+l = 1. By (3) @cl (4) it follows that W;+l = 1. 

may be expressed as 

When i 5 d,  from (4) we have p 5 i as well as p 5 d. Thus we have 0 < p / d  5 1, 
w ( p  - i )  5 0 and 0 < i / d  5 1 and hence by (5), @;+l = 1. 

When i > d,  from (4), p 5 d.  Thus 0 < p / d  5 1 and [p/dl = 1. i > d also implies that 

+;+' = max( [ p / d l ,  w ( p  - i )  + ri/d1 1. (5) 

w ( p  - i )  + [ i /d' l  5 w(d - i) + r i p ] .  

and 
w ( d  - i )  + [ i / d l  5 w ( d  - i )  + i / d  + 1. 

Now w(d-i)+i/d+l 5 1 if and only if wd(d- i )  5 -1. Since tu 2 1, d 2 1 and d - i  5 -1, 
we ascertain that w(p  - i )  + [ i / d ]  5 1. Thus when (4) is satisfied, +'+l = 1, and hence in 
this situation we have shown that W?' = fii+l P -  

We shall now prove the induction hypothesis when (4) is not satisfied, i.e. when 

When i - d + 1 2 2 we obtain from (2) and (5 )  

W'+l = mi? max (1 p - i + j - 1  l , w ( P - i ) + l - - ; i - - I ) + l  j - 1  
P i-d+l< J <i+ 1 

15 



When i - d + 1 5 1, 

hence 
p - i  wi+l p = m=(l-l,w(P - i ) )  + 1. 

By (6), p - i 2 1 and consequently w ( p  - i )  2 [(p - i ) / d ] ,  and thus 

p - i  
m u (  1 7 1 ,  w(p - i ) )  + 1 = w(p - i ) .  

Since 1 5 i 5 d ,  [ i / d l  = 1 and thus 

1 ( i  + 1) - 1 s wi+l - 
p - W ( P  - i )  + 1-J = w(p - ( i  + 1) - 1) + 1 d 

We have thus shown that = and the proposition is proved. P 
0 

4 Load Balance - Synchronization Cost Tradeoffs 

4.1 
For a given problem, the tradeoffs between load imbalance and synchronization costs will 
vary with choice of window and block size. We will examine this tradeoff in the context 
of solving a lower triangular system generated by the zero fill factorization of the matrix 
arising from a rectangular mesh with a five point template. We will utilize P processors and 
partition the domain into n horizontal strips where each strip is divided into m blocks, as 
is depicted in figure 1. We will assume that the problem is obtained from a domain with N 
by M mesh points, and that all computations required to solve the problem would require 
time S on a single processor. We will also assume that computation of each block takes 
time TB = S/(mn);  this ignores the relatively minor disparities caused by the matrix rows 
represented by points on the lower and the left boundary of the domain. Horizontal strips 
of blocks are assigned to each of P processors in a wrapped manner. The computation 
is divided into phases; during phase p the processor assigned to strip i computes block 
p - i + 1 in the strip, as long as 1 5 p - a + 1 5 n. 

A brief inspection of figure 1 makes it clear that n + m - 1 phases are required to 
complete the computation. Define M C ( j )  as the maximum number of blocks computed 

Analysis of a Model Problem 
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by any processor during phase j .  The computation time required to complete phase j is 
equal to TBMC(j ) ,  the computation time required to complete the problem is consequently 

j= 1 

We now proceed to calculate M C ( j ) .  During phase j ,  a total of j blocks must be 
computed when 1 5 j < min(m, n). Since the blocks are assigned in a wrapped manner, 

When d n ( m , n )  5 j 5 n + m - min(m,n), a total of min(m,n) blocks must 
completed during phase j .  Due to the wrapped assignment of blocks to processors, 

Finally when n + m - min(m, n) < j 5 n + m - 1, a total of n + m - j blocks must 
computed during phase j so 

be 

be 

The computation time required to complete the problem is consequently 
n+m- 1 

j=l 

min(m, n) 
P 1 +  j 

s min(m,n)-1 

-( + ( n + m -  2min(m,n) + I)[ 
mn j = 1  

n+m-l 

j=m+n-min(m,n)+l 
c 1) 

In a shared memory environment we must synchronize between phases. Assume that 
each s y n h n h a t i o n  has cost 2'8. The total time spent synchronizing is then given simply 
by Ts(n + m - 1). Assume the problem is mapped to a message passing machine so 
that processors assigned consecutive strips of blocks directly communicate and where links 
between processors can operate in parallel. The cost of sending a B word message between 
two processors can be approximated as a! + PB. We will make the further approximation 
concerning the cost of requiring each processor to send a message to its neighbor following 
phase j .  That cost is equal to the time required to communicate the largest message sent 
between two processors following phase j. The maximum amount of information that 
must be sent from one processor to another after phase j is ( M / n ) M C ( j ) .  The cost of 
communications that follow phase j may be expressed as 

M 
n 

a! + P-MC(j ) .  

17 



The total cost of communications is hence given by 

M 
cu(n+rn- 1) + P -  n 

I +  n+m-1 j min(m, n) + (n + m - 2min(m,n) + 111 P j=l 

n+T?t-l 

j=m+n-rnin(m,n)+l 
c 

Using the above considerations, we will now calculate a simple expression for the 
amount of work forgone during a computation when the number of blocks in a strip n 
as well as the number of strips in a problem m are both integer multiples of the number 
of processors P utilized. We thus assume that n = rlP and m = tZP, for tl, t 2  positive in- 
tegers. From the discussion above, during the first min(m,n) - 1 phases, the computation 
requires time 

min(m,n)- 1 

TB r f l -  
j = 1  

During phase j 5 min(rn,n) - 1 when j is not a multiple of P, there are P - j mod P 
processors idle; when j is a multiple of P, no processors are idle. Thus the sum of the 
processor idle time for j 5 min(m, n) - 1 is TB min(r1, t2)  CL,(l - l), or 

min(r1, t2 )P(P - 1) 
2 TB 

Through identical arguments, the sum of the processor idle time for the last min(m, n) - 1 
phases is the same as that above. During the intermediate phases the load is balanced 
with min(m,n) blocks assigned to each processor. 

In a shared memory environment, using the above expressions for the processor time 
wasted due to load imbalance and the time spent in synchronization we find that the total 
processor time wasted from both causes is given by: 

S P ( P  - 1) min(rl, t2)  

rlt2P* + TsP(r1P + r2P) 

Note that the above expression is symmetric with respect to rl and t2. When the 
synchronization cost is the dominant overhead, it consequently does not matter whether 
one uses small windows and assigns large blocks of variables to each processor, or whether 
one uses large windows and assigns small blocks of variables to each processor. Assume 
without loss of generality that t 2  5 tl, i.e. that the window size is at least as large as the 
number of rows of grid points in a block. In this case the total processor time wasted is 
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For any fixed rl reducing r2 to 1 decreases the time spent by processors in synchroniza- 
tion without impacting adversely on the balance of computational load. Thus when the 
number of blocks in a strip n as well as the number of strips in a problem m are both 
integer multiples of the number of processors P utilized, the window size can be profitably 
increased to M / P .  This increase in window size does not affect the distribution of load 
and reduces the number of phases required to solve a problem. 

5 Wavefront Longest Processing Time Scheduling 
Propositions (1) and (2) describe a parametric method of constructing work schedules for 
performing the calculations required to solve the problem in question, when a form of 
barrier synchronization is used between phases. As stated previously, these propositions 
may also be regarded as a way of parametrically describing the wavefronts of a coarse 
grained DAG, each vertex of which represents the solution of a number of rows. It is 
consequently natural to consider balancing the processor load for the block wavefronts of 
this DAG, i.e. balancing the load during each phase of computation. We choose to utilize 
a prescheduled approach for allocating work although it is also possible to allocate work 
represented in these wavefronts in a self scheduled manner. 

The scheduling of independent tasks to obtain a minimum finishing time is known to 
be NP-hard. There exist a variety of methods for obtaining apprnximate sn!utions tn this 
problem [5 ] ,  [8]. One method that has been extensively studied is the Longest Processing 
Time or the LPT schedule. An LPT schedule is one that is the result of an algorithm 
which, whenever a processor becomes free, assigns to that processor a task which requires 
a run time longer than that of any ta sk  not yet assigned. 

While the relative difference in performance between results obtained with LPT and 
optimal schedules in the worst case is 1/3 - 1/(3P) where P is as usual the number of 
processors [5] , in simulations investigating the error that might be expected given a variety 
of randomly generated datasets, it was found that the difference between the generated 
solution and the optimal solution was only a few percent [2]. Because the prescheduled 
work assignment must w e  approximate work estimates based on calculations involving the 
number of floating point operations required to solve for a row of the triangular system, 
a heuristic such as LPT is likely to perform as well as a more expensive scheme to find a 
closer approximation to the optimal schedule. 

The LPT rule requires time rlogr to schedule the execution of r tasks. For a fixed 
choice of window w and block size b in the work schedule, the amount of computation 
in a wavefront of a triangular solve arising from a zero fill incomplete factorization of a 
matrix generated by a regular n by n mesh increases with order n. In an asymptotic sense 
then, even the rather inexpensive LPT scheduling algorithm has somewhat unfavorable 
properties. The performance obtained through the use of the LPT scheduling algorithm 
is compared with that obtained through the use of a wrapped assignment of strings in the 
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following section. 

6 Experimental Results 

6.1 Preliminaries 
The figures discussed in the current section depict the results of measurements made of 
the amount of time required to perform a forward substitution utilizing the three forms 
of synchronization discussed above. The matrix utilized was generated through the zero 
fill incomplete factorization of square meshes of various sizes, in which one of a number of 
templates were employed. 

Before discussing the experimental results in detail, the architecture of the Encore 
Multimax will be briefly described. The Encore Multimax is a bus based shared memory 
machine that utilizes 10 MHz NS32032 processors and NS32081 floating point coprocessors. 
Processors, shared memory, and i/o interfaces communicate using a 12.5 MHz bus with 
separate 64 bit data paths and 32 bit address paths. 

Associated with each pair of processors is a 32K-byte cache of fast static RAM. Memory 
data is stored in this cache whenever either of the two processors associated with the cache 
reads or writes to main memory locations. Each cache is kept current with the relevant 
changes in main memory by continuous monitoring of traffic on the bus [3]. 

All tests reported were performed on a configuration with 16 processors and 16 Mbytes 
memory at  times when the only active processes were due to the author and to the operating 
system. On the Encore the user has no direct control over processor allocation. Tests were 
performed by spawning a fixed number of processes and keeping the processes in existence 
for the length of each computation. This programming methodology is further described in 
[ll]. The processes spawned are scheduled by the operating system, and for this otherwise 
empty system, throughout the following discussions we make the tacit assumption that 
there is a processor available at all times to execute each process. In order to reduce the 
effect of system overhead on our timings, tests were performed using no more than 14 
processes; this left two processors available to handle the intermit tent resource demands 
presented by processes generated by the operating system. 

It should be noted that the bus connecting processors to memory does not appear to 
cause significant performance degradation in problems with the mix of computations and 
memory references that characterize the problems described here. In a set of experiments 
using a variety of sparse lower triangular matrices, multiple identical sequential forward 
solves were run on separate processors at the same time. Timings of this experiment 
exhibited performance degradations of less than one percent as one increased the number 
of processors utilized from one to 14. 
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Figure 7: Effect of Window Size on Execution Time. Matrix from a 100 by 100 mesh, 5 
point template. 10 processors used, timings for 25 consecutive trials averaged. 

6.2 

The effect of window size on execution time was investigated. The data depicted in figure 
7 was obtained through a forward solve of the zero fill factorization of a matrix generated 
using a 100 by 100 point square mesh, in which a 5 point template was employed. Barriers 
were used for synchronization. Note that this matrix is extremely sparse, there are no more 
than two non-zero off diagonal elements in any matrix row. This matrix, along with the 
others described here, has unit diagonal elements. The forward solve consequently does 
not involve divisions. The parallelism encountered here is consequently quite fine grained. 
The strings in thm problem partition the domain into horizontal slices as was described 
in the ana&& of the model problem previously discussed. Horizontally oriented strings 
were used in all experimental results reported here unless another orientation is explicitly 
specified. Ten processors were used to solve this problem, and a block size of one was 
employed. 

A symbolic estimate was made of the optimal speedup that could be obtained in the 
absence of synchronization delays, given the assignment of work to processors character- 
izing a particular window and block size. For each window size, the time required for 
a separate sequential code to solve the problem was divided by the estimated optimal 
speedup. This yields the amount of time that would be required to solve the problem in 
the absence of any sources of inefficiency other than load imbalance. The results of these 
calculations are plotted in figure 7 where they are denoted as the symbolically estimated 
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optimal computation time. 
Dividing the execution time of the one processor version of the parallel code by the 

estimated optimal speedup yields a further refined estimate of the shortest amount of time 
in which the problem could be solved in the absence of synchronization delays. In figure 7 
these results are plotted and are denoted as the adjusted symbolically estimated optimal 
computation time. It is of interest to note that, as predicted by equation (7), the two 
estimates of the optimal computation time predict close to identical computation times for 
windows of size one, two, five and ten. The computation times estimated for windows of 
other sizes are larger. 

Timings were obtained by solving the problem using ten processors on the Multimax, 
timings were averaged over 25 consecutive runs. Barrier synchronization between phases 
was utilized. When timed separately, this synchronization was found to require 75 mi- 
croseconds; this compares to approximately 20 microseconds required for a single precision 
floating point multiply and add. It is not clear that future architectures utilizing much 
faster processors and more general interconnection networks will allow for synchronization 
costs that are as small relative to the costs of floating point computation. In a separate 
set of measurements also depicted in figure 7, the effects of varying window size in an 
environment characterized by higher relative synchronization costs were explored though 
the use of ten 75 microsecond barriers between phases of the computation. 

Finally, the time required to solve the the problem using the sequential code was divided 
by the number of processors used; this is denoted as optimal time. 

Tradeoffs between load imbalance and synchronization costs were examined in a differ- 
ent manner by comparing the symbolically estimated optimal speedup against the number 
of phases required to complete a problem. The symbolically estimated optimal speedup 
takes into account the degree to which a given assignment of work to processors balances 
the workload. The number of phases required to solve a problem has a strong bearing on 
the synchronization overhead encountered in solving a problem. 

In figure 8 the symbolically estimated optimal speedup was compared with the phases 
required for solving a lower triangular system generated by zero fill factorization of a matrix 
arising from a 75 by 75 point mesh, utilizing a nine point template. The strings chosen 
were those partitioning the domain into horizontal strips. 

The estimated speedups resulting from the use of blocks of sizes one and two, with the 
size of windows varying from one to eight are depicted, along with the speedups resulting 
from the use of windows of sizes one and two, with the size of blocks varying from one to 
eight. Also depicted are speedups resulting from using a block size that is equal to the 
window size; both are varied from one to six. 

The tradeoff between speedup and number of phases used, appears to be generally more 
advantageous when large windows and small block sizes are used than when the situation 
is reversed. As was observed in the examination of the performance obtained using the 
five point template, the number of phases declines with increasing window and or block 
size, while the load balance exhibits substantial fluctuations. The tradeoff between load 
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Figure 8: Symbolically estimated optimal speedup versus phases required to solve problem 
on 12 processors. Matrix from a 75 by 75 point mesh, 9 point template. Horizontal strings 
used. 

imbalance and number of phases required appears to be much smoother when the size of 
the window used is set equal to the size of the block than in the other cases discussed 
above; the estimated speedup is in this case a decreasing function of the block and window 
size used. For any given number of phases, the load balance when window size is equal to 
block size is superior to that obtained when the window size is set equal to one or two and 
the block size is varied. 

As synchronization costs increase, it becomes more advantageous to reduce the number 
of phases required to solve a problem even at the cost of increased load imbalances. 

The relative performance of four combinations of window and block size in the face 
of increasing $ynchronieation costs axe depicted in figure 9. The execution time required 
to solve the lower triangular system described above was measured when the following 
combinations of window and block size were employed: (1) window size = 1, block size = 
1, (2) window size = 2, block size = 1, (3) window size = 1, block size = 2 and (4) window 
size = 2 , block size = 2. Between phases, we employed from one to ten 75 microsecond 
barrier synchronizations. 

The numbers of phases and the symbolically estimated optimal speedup for each of 
these cases are listed below. 

23 



BFIRR!ER T I M E  ‘4.5. TIME TP ZaMPLETE PRBBLEM m 

300 - 
v1 r 
w - 
I- 

200 

- 

. 

window = 1, block size 1 4 
window = 1, block size = L I 

block size window 
1 1 
1 4 
4 1 
2 2 

I 

phases 
223 
112 
167 
112 

- .... _.. .. . .. _. ... 

-..:.+, __.... -..- 
_. _.. .. _. window = 2, block siz e = 2  

4 
I 

1 t 1 

loo r i 
i 

I I I I j 
2 4 6 8 IC 

MULTIPLES 0F BFlRRlER TIME 

Figure 9: Effect of window, block size on execution time. Matrix from a 75 by 75 point 
mesh, 9 point template. 12 processors used, timings for 25 consecutive trials averaged. 

As one can observ 

est. speedup 
9.43 
7.26 
6.84 
8.14 

hom the above table, block size four, window one and block size one, 
window four in this problem require at least as many phases as does block size two, window 
two and the later achieves a superior load balance. The use of block size one, window one 
allows one to achieve a load balance that is even better, but at the cost of added phases of 
computation. In figure 9, for barrier times between 75 and 150 microseconds, the shortest 
run times were obtained using block size and window size both equal to one. When barriers 
were utilized that required more than 150 microseconds the use of block and window sizes 
both equal to two lead to the shortest run times. 

6.3 String Orientation Effects 
The relative merits of using horizontal versus diagonal strings in partitioning a mesh with 
a 9 point template were investigated. In figure 10 is plotted the time required for 12 
processors to solve a lower triangular system generated by a zero fill factorization of a 
matrix arising from a 75 by 75 point mesh. The block size was kept constant at one, 
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Figure 10: Effect of string orientation on execution time. Matrix from a 75 by 75 mesh, 9 
point template. 12 processors, block size = 1, timings for 25 consecutive trials averaged. 

a d  the window size was varied from one to eight. Tests were carried out using both 
single 75 microsecond barriers between computational phases and using ten 75 microsecond 
barriers between phases. For each synchronization cost and window size investigated, 
the time required for solving the problem using diagonal strings was greater than that 
required when horizontal strings were utilized. A substantial reduction in execution time 
occurred with increasing window size when horizontal strips were employed and inter phase 
synchronization was expensive. 

In figure 11 for the problem described immediately above, the symbolically estimated 
optimal speedup is plotted against the number of phases utilized. The use of horizontal 
strings leads to a substantially more favorable tradeoff between the speedup obtained and 
the phases required for solving the problem. 

6.4 Comparison Between LPT and Wrapped Scheduling 
When barrier synchronization is utilized, the work required to compute the blocks during 
a phase can be scheduled in an explicit manner. We have discussed how one might use an 
inexpensive heuristic such as LPT to do this scheduling. Experimental comparisons will 
now be made between the performance that can be achieved through the use of LPT and 
that obtained by assigning the workload to the processors in a wrapped fashion. 

The difference in performance between these scheduling methods is only expected to 
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Figure 11: Symbolically estimated optimal speedup versus phases required in solving prob- 
lem on 12 processors. Matrix from a 75 by 75 mesh, 9 point template. Size of block = 
1. 

be noticeable in problems with some degree of irregularity. If during each phase a number 
of blocks with identical computational requirements had to be executed, a wrapped as- 
signment should lead to  an optimal balance of load during that phase. Note that this does 
not mean that the load will be balanced, since the number of blocks assigned to processors 
can differ by one. 

Of course, the computational requirements of blocks to be computed during a phase 
are not identical, even in problems derived from rectangular meshes in which a uniform 
template was utilized. In such problems, the blocks derived from mesh points near the 
boundaries of the domain will generally require smaller amounts of computation than those 
derived from points further away from the boundaries. Two sets of experiments were per- 
formed to compare LPT and wrapped scheduling using a matrix generated from a 80 by 
80 point mesh with a 5 point template and a matrix generated from the same mesh using 
a 13 point template. Block and window size were varied and 10 processors were used. 
The performance obtained using the two scheduling methods were compared using both 
symbolically estimated optimal speedups and measured runtimes on the Encore Multi- 
max. The symbolically estimated optimal speedups were not effected by the scheduling 
mechanism used, and the Multimax runtimes measured showed minimal differences in no 
consistent direction. 

More substantial differences in run times were noted in problems possessing irregular- 
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Figure 12: Run times from wrapped and LPT scheduling. Matrix from 80 by 80 mesh, 
mesh rows 1 to 29, 51 to 80: 5 point template; rows 30 to 50: 13 point template. 10 
processors, block size equal window size, timings for 25 trials averaged. 

ities that would lead to more substantial differences in the computational requirements of 
blocks during each phase. The data depicted in figure 12 was obtained through a forward 
solve on 10 processors of the zero fill factorization of a matrix generated using a 80 by 80 
point square mesh. Points in mesh rows 1 through 29 and rows 51 through 80 employed 
a 5 point template; points in rows 50 through 80 employed a 13 point template. The 
block size was set equal to the window size and both were varied from 1 to 5. The time 
required to solve the problem was measured when LPT or wrapped scheduling was used to 
balance load in each block wavefront. These measurements were made when one barrier 
was used; to aimulate the effects of these manipulations on an architecture requiring more 
expensive synchronization, measurements were also made using 10 barriers. For window 
sizes of 2 and 3 LPT scheduling led to shorter run times than did wrapped scheduling. 
When a window of size one was used in this problem, no significant difference between the 
scheduling mechanisms was measured. 

When only one barrier is used, there is no advantage to using a window of size greater 
than one in any event. Consequently on the Encore, for this problem, there appears to be 
nothing to be gained from using either LPT scheduling or from using methods to increase 
the granularity of parallelism. On architectures where the costs of synchronization are 
larger compared to the costs of computation, both LPT scheduling and the use of these 
granularity increasing methods wiil be advantageous. 
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Figure 13: Efficiency of wrapped vs LPT scheduling. From Multimax times. Matrix from 
100 by 40 mesh, bottom strips have 25 point template, rest have 5 point template. 12 
processors, block,window equal 1, timings for 25 trials averaged. 

A set of problems exhibiting more dramatic load imbalances was also examined. A lower 
triangular system was produced by the incomplete factorization of a matrix generated from 
a 100 by 40 mesh point matrix in which the bottom s strips had a 25 point template, and 
the 40 - s upper strips had a 5 point template. Both the block size and the window 
size were set equal to one and a single barrier was used for synchronization. Figure (13) 
depicts the efficiency with which 12 processors of the Multimax solves the system as s is 
varied from 0 to 12. Efficiency is defined here as the ratio of the time required to solve the 
problem using a separate sequential code on one processor to the product of the measured 
time to solve the problem and the number of processors used. 

The efficiency obtained through the use of LPT scheduling does not vary much with 
s, remaining approximately 0.50. The efficiency exhibited by the wrapped scheduling 
decreases to a low of 0.36 for s equal to 3, but is comparable to the efficiency obtained 
through the use of LPT when s is close to either 0 or 12. The reasons for this appear to be 
quite straightforward. When one has, during each phase, a number of very time consuming 
blocks that is small compared to the number of processors used, one risks a serious load 
imbalance when a wrapped assignment strategy is used. As the number of time consuming 
blocks encountered during each phase increases to approach the number of processors, the 
amount of wasted processor capacity decreases. 

Further insight into the situation is provided by figure 14, in which the problem de- 
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Figure 14: Run time of wrapped and LPT scheduling. Matrix from 100 by 40 mesh, 
bottom 5 strips have 25 point template, other strips have 5 point template. 12 processors, 
block, window equal 1. Timings for 25 trials averaged. 

scribed above is solved when s = 5 for varying numbers of processors. In this figure we 
display the symbolically estimated optimal computation times (abbreviated as SEOC in 
the figure) obtained from both the wrapped and the LPT schedules, along with the mea- 
sured Multimax execution times. As in previous figures, the optimal time is defined as the 
sequential time divided by the number of processors. The time required for both synchro- 
nization and for executing the program control structure was also measured by making 
program measurements with the floating point calculations commented out. 

Insight into the sources of inefficiency in this problem may be obtained by examining 
this figure. Them is a subatantial difference between the optimal time and both sym- 
bolically estimated optimal computation times, suggesting that load imbalance makes a 
significant contribution to the departure from the optimal run time observed here. This 
conclusion is reinforced by observing the measured synchronization and setup time. 

It may be noted in this figure that the symbolically estimated optimal computation 
time calculated for the wrapped assignment added to the synchronization and setup time 
produce numbers that are quite close to the measured multimax time for wrapped schedul- 
ing, This correspondence has been noted in the case of the wrapped assignment in a variety 
of other problems not presented here and gives confidence in the accuracy of the measure- 
ments. When LPT scheduling is used, the symbolically estimated optimal computation 
time appears to have less predictive value, as seen in figure 14, and has been noted in other 
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measurements. For instance, while the efficiencies obtained through using LPT in figure 
13 vary little with s, the symbolically estimated optimal computation times vary with s to 
a substantial extent. For instance for s equal to 2, the measured time taken to solve the 
problem using the LPT algorithm was 112.16, while the SEOC was 69.4; for s equal to 3, 
the measured time was 118.3 but the SEOC was 99.31. The difference in synchronization 
time between the two cases was, however, quite minimal. 

It should be remembered however, that the LPT scheduling method uses symbolically 
estimated computation times to perform its load balancing. SEOC estimates are clearly not 
completely accurate. If one measures the SEOC obtained, after rescheduling computations 
using a method that produces a near optimal processor schedule based on operation counts, 
one will tend to obtain overly optimistic estimates of the execution time. This observation 
points to the obvious importance of accurate run time estimates when performing LPT 
scheduling. 

6.5 A Comparison between Barrier and Dataflow Synchroniza- 
tion 

While barrier synchronization is relatively inexpensive on the Encore Multimax, nearest 
neighbor synchronization is less expensive still as it can be implemented in a way that 
requires, each processor, only one shared variable increment followed by a busy wait. 
Figure 15 depicts a comparison between execution times measured when a barrier was 
utilized and execution time measured when dataflow synchronization was employed. Both 
barrier and dataflow synchronization - setup time are also measured and depicted. The 
problem solved here originates from a 75 by 75 point mesh with a 9 point template, the 
window and block size are 1. It is evident from this figure that dataflow synchronization 
is less expensive than barrier synchronization. 

7 Conclusion 
We have carried out an investigation into methods appropriate for the aggregation, map- 
ping and scheduling of relatively fine grained computations specified by a directed acyclic 
graph. The solution of very sparse triangular linear systems provides a useful model prob- 
lem for use in exploring these heuristics. A method for using the triangular matrix to 
generate a parameterized assignment of work to processors was described along with sim- 
ple expressions that describe how to schedule computational work with varying degrees of 
granularity. These expressions are of considerable practical importance because they allow 
one to easily determine what computations need to be performed during a given phase to 
ensure that all data are computed before they are required. The tradeoffs between load 
imbalance and synchronization costs as a function of block and window size were examined 
in the context of a model problem and it was demonstrated that increases in the granu- 
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Figure 15: Execution time of barrier and dataflow synchronization. Matrix from 75 by 
75 mesh, 9 point template. Window, block equal 1. Timings from 25 consecutive trials 
averaged. 

larity of parallelism can, in some circumstances, be obtained without any increase in load 
imbalances. 

Experimental timings on an Encore Multimax shared memory multiprocessor confirmed 
the above observation in the case of the model problem and went on to explore the effects 
of block size and window size on multiprocessor performance in a wider variety of settings. 
The ratio between the costs of synchronizing and the costs of performing computations on 
the current Multimax is low enough that rather fine grained parallelism can be profitably 
used. Examination of load imbalance / synchronization cost tradeoffs in architectures 
requiring coarser grained parallelism was performed by experimentally varying the cost of 
synchronization. 

As was to be expected from the model problem analysis, there is often not a particularly 
smooth tradeoff between load imbalance and computational granularity. Studies of this 
tradeoff obtained through comparing operation counts and the number of computational 
phases required to solve a problem suggest that the load balance granularity tradeoff 
becomes smoother when window and block size are roughly equal. 

The effects of the choice of strings on performance was also examined. It was found 
that partitioning a lower triangular system obtained from a rectangular domain using 
strings with a horizontal orientation yielded a much more favorable tradeoff between load 
imbalance and computational granularity. 
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The Longest Processing Time scheduling heuristic was used to explicitly schedule the 
work performed during each phase. The performance obtained through the use of this 
method was compared to the time required for assigning blocks to processors in a wrapped 
manner. LPT scheduling was found in some cases to decrease the run time in problems 
with irregular work demands during a typical phase; it had no measurable effect in very 
uniform problems. Through the use of symbolically estimated optimal computation times 
obtained through operation counts, along with direct measurements of synchronization 
times, for both LPT and wrapped scheduling, the origins of the measured run times were 
traced. 

An experiment was conducted comparing the execution costs incurred through the use 
of barrier and dataflow synchronizations on the Multimax. Despite the use of a rather 
efficient barrier, time was clearly saved though the use of the even less expensive dataflow 
synchronization method. Dataflow synchronization has, however, a number of drawbacks. 
When non local data dependences occur between blocks, we see from proposition 3 that 
the number of phases required to complete a problem increases. Furthermore it does not 
appear that one can easily make use of methods for balancing the load between phases 
when dataflow synchronization is employed. 

To sum up, in this paper we present a framework for partitioning very sparse triangular 
systems of linear equations that appears to be flexible enough to produce favorable per- 
formance results in a wide variety of parallel architectures. In this paper we have used the 
Multimax as a hardware simulator to investigate the performance effects of using the par- 
titioning techniques presented here in shared memory architectures with varying relative 
synchronization costs. 

A few comments are in order on which of these techniques we can recommend for use on 
the current Multimax. On the Encore Multimax, due to it’s low ratio of synchronization 
costs to costs of floating point operations, there does not appear to be an advantage in 
aggregating work to  increase the computational granularity. Balancing load within each 
phase of computation does appear to be advantageous in this architecture, although further 
practical experience is required to discover when the overhead required for this extra stage 
of scheduling is worthwhile. The use of dataflow synchronization on the Multimax also 
appears to be advantageous although it’s use precludes that of wavefront LPT balancing. 
One can limit the problem decomposition process to the identification of wavefronts if 
one has no need to increase granularity through the use of windows or to use strings to 
implement dataflow synchronization. Hence, on the Encore there should be no reason to 
pay both the overhead for string decomposition and for LPT balancing. 
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